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ABSTRACT 

In this paper we study the problems of existence ofnoncomplemented subspac~s 
and Lozinsky-Kharshilade systems [10] in Banach spaces not isomorphic 
to Hilbert spaces. 

1. Introduction 

In [1] Banach asked whether a B-space could have a noncomplemented subspace. 
This was answered for some concrete spaces like the Lp, (lp) (1 < p # 2), (Co) and 
(m) in [13, 17, 4(p.553)]. All C(H) spaces, H infinite compact Hausdorff have 
such subspaces since they contain copies of (Co). In the same way, all universal 
spaces for separable spaces have noncomplemented subspaces. 

One expects that almost all B-spaces have noncomplemented subspaces. Thus 
the structure of Hilbert space is especially well known, partly since every subspace 
is complemented. The converse question, whether a space, every subspace of 
which is complemented is isomorphic to Hilbert space, is still unsolved. It remains 
unsolved even if one assumes the existence of a constant K such that every subspace 
admits a projection with norm < K. 

In §2 of this paper, sufficient conditions are given for a B-space to have a 
noncomplemented subspace. In certain cases, the conditions are necessary. In 
§3 we study the related notion of A-system (Lozinski-Kharshiladze system [10]), 
showing that except for spaces isomorphic to Hilbert space, the usual concrete 
separable Banach spaces have such systems. Finally, in §4, we raise some problems. 

We wish to express our gratitude to Professor Joram Lindenstrauss for reading 
the manuscript and making valuable remarks. 

2. Complemented subspaces 

Following F. J. Murray [13], define the projection constant 2(X) for a subspace 
X of a Banach space E to be the infimum of the set of norms of projections from E 
onto X, or 2(X) = oo if X is not complemented in E. 
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We shall now prove that if a separable Banach space has finite dimensional 
subspaces with arbitrarily large projection constants, then the space has a non- 
complemented subspace. It would be desirable to have a converse to this statement, 
but we shall see that only partial converses are available. 

We shall need the following lemma at several points in the paper. We set 
;t$(X) = sup {2(F) I F is a finite dimensional subspace of X). 

LEMU_A 1. If E = G @ Y, dim G < oo and 2:(Y) < 0% then 2:(E) < oo. 

Proof. If Z is a closed subspace of E and if X ~ Z with d i m X / Z  = N < 0% 
then there exists a projection Q~ of X onto Z with norm =< 2 ~ + e (see e.g. [7]). 
Thus, if P: E ~ X is a projection, then Q~ o P: E-~ Z, and it follows that ~(Z) 
< 2NA(X). Now, let e > 0 and P~: E ~ Y be a projection with IIP, II < 2N + e 
(where N = dim G). Let F be an arbitrary finite dimensional subspace of E, and 
let F c F' = (1 - P~) (E) ~ P,(F). Since dim P~(F) < dimF < 0% there is a 
projection Q from Y onto P~(F) with [[ Q II < ~ Y )  + Therefore, ( I -  P~) + Q o P,  
is a projection of E onto F'. Therefore, 2(F')I< 2~+  1 + 2N2s(Y), and since 
dim F' /F  < N, we see that 2(F) < 2N(2N+ 1 + 2NAVY)), and so k/(E ) < oo. 

We are now ready for the first theorem. 

THEOREM 1. Let E be a Banach space such that 2:(E) = oo. Then E has a 
noncomplemented subspace, F. The subspace F has a Schauder decomposition 
into finite-dimensional subspaces. 

Proof. Let X1 be a finite dimensional subspace of E with 2(X1) > 1. Let 
( f l , '" , f .~)  c E *  so that lift11-- 1, and let ( g t , " ' , g . l ) c E *  be E 1 = X 1. Choose 1 1 

Hahn-Banach extensions of the f ) ' s ,  and where these are chosen so that 
[1")~1g~1([-1 ,1]) ]  c3 E1 is contained in the 2 ball of El. Let Y1 
- -  n l  - I " ) j = l g ~ ( 0 ) .  Then E ~ n Y I = { 0  } and the natural projection of El@Y1 
onto E~ has norm < 2. By lemma 1, choose E2 c I:1 so that dimE2 < oo and 
2(E2) > 2. As above, we find (g . ,+l , ' " ,g .~) in  E* with IlgJll---1 and so that 
[t"~n~ g -  l t r  I I j=l j ~ L - I , 1 ] ) ] n ( E I @ E 2 )  is in the 2 ball of E I @ E  2. With I72 

n 2  = [")j = 1 g~ 1(0), we have I:2 = I:1, codim 1:2 < n2 and the natural projection of 
E, @ E2 @ I:2 onto E~ @ E 2 has norm < 2. Proceeding in this way, we obtain 
(E.) and (Y.) such that 2(E.)> n, Y.+I c Y. and the natural projections of 
E1 @"" @ E. @ Y. onto E1 @"" @ E. have norm < 2. 

Now define F = ~°~=IE~= { ~.e . [e .~E.  and ~ e .  converges in E}. By 
standard arguments, F is a closed subspace of E and has the Schauder decomposi- 
tion (E.). Let P. be the natural projection of F onto E1 @ ' "  @ E.. Then if P is a 
projection of E onto F, (I - P._ 1)P.P is a projection of E onto E., and we see 
that 2(E.) < 6 IIP il" This is impossible, so F is noncomplemented. 

R~MARK 1. The first part of the argument in the proof above uses the technique 
found in [3], and yields the following: For any Banach space E, any finite dimen- 
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sional subspace X of E, and any e > 0, there exists a subspace Y of finite codimen- 
sion in E such that X n Y = {0} and the natural projection of X @ Y onto X 
has norm < l + e .  

REMARK 2. The final part of the argument in the proof above also shows 
that if P is any projection of E onto Ex @ E2 @ "" @ E, @ B where B c E,+~, 
then II P II >= n/6. We shall use this fact in the proof of Theorem 3 below. 

The following result is similar to a result of Lindenstrauss [11], and its proof 
is the same. It furnishes a partial converse to Theorem 1. 

TrmOREM 2. I f  E is a reflexive Banach space, and if 2:(E) < 0% then every 
subspace of E is complemented and admits a projection with norm < 2:(E). 

From Theorems 1 and 2 we infer: 

COROLLARY. If E is a separable reflexive Banach space, and all subspaces of 
E which admit Schauder decompositions into finite dimensional subspaces are 
complemented, then there is a constant K > 1 such that every subspace of E 
admits a projection of norm < K. 

In Lindenstrauss [11], the projection of Theorem 2 is constructed as the weak 
operator limit of a sequence of projections, P,, satisfying (ll P, ]]) bounded and 
P,+I(E) ~ P,(E) for all n. In general, for separable E, such a sequence of projec- 
tions need not converge even in weak operator topologies, as shown by the fol- 
lowing example, communicated to us by V. I. Gurarii and M. I. Kadec: 

Let X be a subspace of C([0, 1]) such that X is noncomplemented in C([0, 1)], 
and X is isomorphic to C([0,1]) (see, e.g. [6]). Let ( x . ) c  X be the image 
under the isomorphism of the usual Schauder basis (z.) = C([0, 1]). Then, if 
C.=  Ix1, ..., x,], by virtue of [12], Corollary 6.2 and Lemma 2.1 there exist pro- 
jections (P.) such that P,: C([0,1]) ~ C n c X, (I] P. ]l) bounded, and [C.] = X 
not complemented in C([0,1]). 

3. A-systems 

In view of Theorem 1, the following definition is natural and useful in the study 
of projections onto finite dimensional subspaces. 

DEFINITION. A linearly independent sequence (Xn) in a Banach space E is 
called a sub A system [sub F system] if 

. . . ,x , ] )  do [ sup, ([x, . . . ,x , ] )  = do] .  
I I  

The sequence is a Lozynski-Kharshiladze system or A system [resp. F system] 
if  also [x.] = E. 
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From Theorem 1 it is clear that if E has a sub F system, then E has a non- 
complemented subspace. However, spaces with A systems may easily be cons- 
tructed in which the system has a subsequence spanning a complemented subspace. 

S. M. Lozynski and F. I. Kharshiladze have proved (see [141, appendix 3) 
that the sequence x,(t) = t "- 1 (t e [0,11, n = 1, 2,.. .) is a A system in C([0,11). 
Using Sobczyk's construction [17] for a noncomplemented subspace of lp or Co, 
one easily constructs a sub F system as below. The problem, given a noncomple- 
mented subspace construct a sub F system, remains open. 

Consider lp=(~ , ,~ l l~) ,  [111. Define ~ ( l ~ = s u p { 2 ( X ) l X c l ~ } .  Then 
n n fl n lim ~(l~) = do [17]. In/~ choose Xl,...,Xk, SO that 2 ( [ x l , . . . , x j ) - ,  do. Then the 

/3 

sequence (x~, t 2 • ",Xk~,Xl," ')  is a sub F system in l n (since for any projection 

P: z, -~ rx~, . . . ,x~3 we have I1P II >-- It P II'.ll >= ~(Ex7, "",xT,.])).A similar argument 
yields such systems in co. 

THEOI~M 3. Let E be a Banach space. The following are equivalent. 
(a) There is a sequence (X,) of finite dimensional subspaces of E such that 

~( x . )  -+ ~ .  
(b) E has a sub F system. 
(c) E has a sub A system. 
(d) E has a A system (if  E is separable). 

Proof. (a) says that 2:(E) = 0% so if we let E, (from the proof of Theorem 1) 
have basis (e],...,e~,.), from Remark 2 above it follows that the sequence 
(e~, ...,epl,e 1 , x  2 ...) is a sub A system, so (a) implies (c). That (c) implies (b) implies 
(a) is clear, and (d) implies (a) by the definition of a A system. We now show that 
(c) implies (d). 

Let {xl, ...} be a sub A system and let F = [x,]. Choose a sequence {y,} in E, 
not meeting F, such that [xi, Yj] = E and {xi, y j} is a linearly independent set. 
Choose a projection P,, from E onto [Yx, "", Y,,] such that P,,(x,) = 0 for each n. 
This may be done using the linear independence, that F n [Yx, "",Y,,] = 0, and 
the Hahn-Banach theorem. Let Q,,k be a projection from E onto 

[xl,...,x,,y~,...,yd 

and let R ~ = I - P ~ .  Then RkQ,,k is a projection onto [x l , . . . ,x , ] .  Since 

~([x,, ..., x,l)  _-__ II Q.,~ II II Rk II, one has II Q.,, I - ~[x,,  . . ,  x.l)/ll R, II" Then choose 
nk such that n > nk implies 2 ( [x~ ," ' ,x , ] )>  II R~IIn. Then the sequence ~ , . . . , x , , ,  
Yl, x ,~+t , " ' , x ,~ ,y] , " ' ,  i.e. the sequence ( z , ) c E  defined by 

x,-~+t for n~_t+ k < n < n~ + k -  1 (k = 1,2,.. .) 
Zn l Yk for n = nk + k (k = 1, 2,...) 

where no = 0, is a A system in E. Indeed, (z,) = (xi, yl) is linearly independent 
and [z, 1 = E. Furthermore, if n~_ 1 + k < n < nk + k - 1, and if Q is an arbi- 



Vol. 6, 1968 COMPLEMENTED SUBSPACES 307 

trary projection of E onto I-zl,...,z~] = [Xl, '",X~-k+l,  Yl,'",Yk-1], then Q 
is a Q~-k+l.k-1 and so by the choice of nk-1, 

~([x....,x._~+d) llRk_11l(n-k+1) 
II e II = II Q~-~+, . , - ,  II > -> -- IIR~-I[I - llRk-,ll 

= n - - k + l > n k _ l + l .  

Similarly, if Q is an arbitrary projection of E onto 

then 
[z 1,'' ', z~'] = [xl,  ..', Xn-k, Yl, "", YR], 

HQII = llen-k,,ll > ~([x,,...,x._d)_> IIR~II(n- k) 
-- fIR, If - llg~ll -n~, 

which completes the proof. 

COROLLARY 2. If a separable Banach space E has a subspace F with a A 

system, then the space E has a A system. In particular every A system of F 
extends to a A system of E. 

Proof. Observe that every A system (x~) c F c E is a sub A system of E, 
since for any projection Q of E onto [xl,...,xn], Q [ F is a projection of F onto 
[xi, . . . ,xn] and IIQIFII<=I[Qll. Thus by Theorem 3 and its proof, (x~) can be 
extended by a A system of E. 

From this corollary and the remark before Theorem 3 it follows that, in par- 
ticular, the spaces Lp, C(H) (H compact metric) and all other universal spaces for 
separable spaces have A systems. The existence of A systems for Lp spaces was 
obtained by a different method by M. I. Kadec [10]. 

The converse of the second statement of the corollary is not true, i.e., a sub- 
sequence of a A system need not be a A system in its closed linear span--it may 
even be basic. Moreover, it is not hard to see that every linearly independent 
complete sequence in a separable Banach space F can be extended to a A system 
of a suitable superspace E. It is not known whether some subsequence of every A 
system is basic. The answer to this is affirmative for the known concrete A systems. 

COROLLARY 3. I f  E has a non-reflexive subspace with an unconditional 
basis, then E has a A system. 

Proof. Such an E has [8] a subspace isomorphic to Co or ll. The result follows 
from Corollary 2. 

4. Remarks and unsolved problems 

In Theorem 1 there remains the question of whether the subspace F has a basis 
and whether the constructed sub F system is a basic sequence. This question is 
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closely related to the following problem in finite dimensional spaces about which 
very little is known. Given a finite dimensional space E is there a basis {el , '" ,  e,} 
such that the projections ~ ~iei ~ ~.~ otie i have norm < K where K is inde- 
pendent of n, m, and E? It is known that such a K, if it exists, will be strictly 
larger than 1 [2]. 

The following is not hard. If E has sub F system (x,) and if (x,) is not a F system 
in [x,] then [x,] is not complemented in E. There exist such E and {x,} in an 
example of Zippin's, with (x~) basic and E = c o [18]. 

The following problems are related to the Hilbert space problem of § 1. If E 
has noncomplemented subspace do there exist X,, finite dimensional, such that 
2(X.) ~ ~ ?  If every subspace with a basis is complemented is the above true? 
If every subspace is complemented or if every subspace with a basis is comple- 
mented is the space reflexive? If E is reflexive with a conditional basis (e.) is some 
subsequence (e.k) a sub F or sub A system? 

One easily sees that if a space fails to have the Grothendieck approximation 
property, then every complete sequence in the space is at least a F system. On 
the other hand, if (x.) is complete, and if y.  = x.  + ~,~- 1 an k Xk is a basis, then 
(x.) cannot be a F system. 

Thus, if E has a basis then it has a complete non F system. Conversely, if P. is a 
projection from E onto [x l , . . . , x . ]  and UPnll k for each n does [xn] have a 
basis? This problem has been raised by V. N. Nikolskii [15]; he has shown that 
under an additional hypothesis the answer is affirmative. 

If one can show that every space with basis having no A system is isomorphic 
to Hilbert space, then one solves the Hilbert space problem (§ 1), if the following 
conjecture of Pelczynski [16] is true: A separable space is isomorphic to Hilbert 
space if and only if every subspace having a basis is isomorphic to Hilbert space. 
We show, using Remark 1 after Theorem 1, that if we replace basis by Schauder 
decomposition into finite dimensional subspaces, then the answer is affirmative: 

PROPOSITION. I f  E is not isomorphic to Hilbert space, then E has a separable 
subspace F having a Schauder decomposition into finite dimensional subspaces, 

and not isomorphic to l z. 

Proof. Let E~ c E, dim E~ < oo and let F1 = E have codim F1 < oo such 
that E 1 C3 F1 = (0} and the natural projection of Et @ F1 onto E1 has norm 
< 1 + e. F~ cannot be isomorphic to Hilbert space, since we assumed E is not. 
Therefore, by a theorem of Dvoretzky [5] and Joichi [9], Fl contains a subspace 
E2 of finite dimension such that dist (E2,122) > 2. We can also find F 2 ~ F 1 such 
that codim F 2 < 0% f 2 f'~ E 1 ~) E 2 ~-- {0} and the natural projection of E 1 ~9 E 2 
@F2 onto E1 @E2 has norm < 1 + 8. Continuing in this way, one obtains 
sequences (E.) and (F~) with F.+i c F., E.+l c Fn, dim E. < ~ ,  codim F. < 00, 
dist (g., l~)> n, and such that the natural projection of El ~ ".. @E. ~ F  n 
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onto  E I ~ . . . ~ E n  has n o r m < l + , .  Then, F =  ~ = t E n = { Z e ~ l e ~ 6 E ,  

and ~ e n converges in E} is the desired subspace. 
In  case E has a sub F system, then for  any Y of  finite codimension in E one 

easily constructs an increasing sequence (U j) o f  finite dimensional  subspaces such 

that  [ U j ] =  Y and 2(U j ) ~  oo. Can  one always do this for  some Y o f  infinite 

codimension? In  particular, if  (xn) is a A system, is there a subsequence (xnk) 

which is a sub A system and such that  [ x j  has infinite codimension? 
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